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1. INTRODUCTION 
 

 The international program AMMA (African 
Monsoon Multidisciplinary Analysis), which will 
be in intensive phase from 2005 to 2007 over 
West Africa, has a crucial need of precipitation 
measurements at scales ranging from the small 
basin to the regional scale, and from 
instantaneous values to monthly totals. This 
need includes estimations of the errors 
corresponding to each scale. In order to get 
relevant information in regions with very 
sporadic rainfall, the use of a high time sampling, 
which can only be provided by the geostationary 
satellites, is required. In a first step, as no 
sufficient ground validation data are available, 
the training of a neural network system is 
performed using four monthes of space time 
data between Meteosat and TRMM. Several 
Meteosat-derived parameters, including 
radiances and space-time characteristics, 
constitute the entries, while Precipitation Radar 
(PR) 2A25 rain estimates are used to train the 
outputs. These outputs are considered as rainfall 
probabilities. The second step of this research 
consists in multiplying these rainfall probabilities 
with potential rainfall intensities, calibrated by a 
GPCP reference dataset. Estimated rainfall 
intensity images are provided with geostationary 
satellite time and space resolution.  
 
2. DATABASE 
 

Our experimental database combines a 
Meteosat-7 dataset, TRMM precipitation radar 
observations and the 1°x 1° grid synthesis daily 
GPCP data (1dd). A raingauge dataset provided 
by the IRD** (Ali et al., 2003) is used to validate 
our algorithm. 

The considered geographical zone is West 
Africa during the 2000 rainfall period (June to 
September). The TRMM data used is the 
3G68Land dataset.  
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3. NEURAL NETWORK AND RAINFALL 
PROBABILITIES 

 
A neural network rainfall probability 

estimation has been chosen rather than direct 
rainfall intensity calculation because of its closer 
relationship with the information extracted from 
the geostationary satellite images. More 
information about rainfall estimation and rainfall 
classification difficulties using a feed forward 
neural network are detailed in Bergès and 
Chopin (2004) 
 

3.1. Neural Network implementation 
 

 A three layer feed forward network has been 
selected. Assuming that rainfall probability is a 
continuous phenomenon it has been proved that 
it could be approximated by such a network 
(Hornik et al. 1989, Funahashi, 1989). 

This neural network takes into account eight 
inputs which are deduced from Meteosat-7 : The 
Infrared (IR) temperature, its difference with the 
water vapour (WV) temperature, IR and WV 
local variance, IR and WV temporal difference, 
longitude, and latitude. 

Output reference values are derived from 
TRMM 2A25 3G68Land grid data product. 
Rainfall presence is coded as a binary value and 
the outputs of this neural network are directly 
interpreted as rainfall probability. 

It is essential to break the correlation 
between two neighbouring pixels due to the 
image spatial coherence. If not, following 
elements from learning dataset do not 
compensate their random dispersion and 
reinforce their common patterns : the direct 
consequence is to overweight the last image of 
the learning dataset. To correct this artefact, 
input dataset are scrambled, separating 
contiguous pixels in the learning phase. 
Once weights have been estimated in order to 
get differences between estimated and 
reference values as low as possible, this 
network can be computed on any geostationary 
images dataset. 
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3.2. Results and validation 
 

When the training is accomplished, the 
rainfall probabilities have to be computed for 
every satellite slot on our interest period. Figure 
1 is a resulting rainfall probability image. 

 

 
Figure 1 : Rainfall probability image (Pr) - September 
30th 2000 slot 39 

 
To validate these results, the feed forward 

neural network has been compared with two 
other algorithms frequently used to evaluate 
rainfall probabilities.  

The first one is an infrared temperature 
threshold. If a pixel infrared temperature is 
colder than a threshold “s” it is considered as a 
rainy pixel otherwise not. The proportion of rainy 
cases according to TRMM 2A25 product has 
been estimated. To minimize the bias, the 
threshold value “s” has been selected in order to 
fit with this proportion of cases. 

The second algorithm is a probability 
matching method : The proportion of rainy cases 
has been calculated on the TRMM 2A25 dataset 
for each infrared temperature value. These 
proportions are considered as rainfall 
probabilities. So, the rainfall probability of a pixel 
“p” depends on its infrared temperature. 

The feed forward network results have been 
computed for this experiment considering 10 or 
1000 times the learning dataset to show the bias 
differences related to this change.  

Bias absolute values obtained with the 
TRMM 2A25 reference dataset (from June to 
September 2000) have been calculated for each 
day, slot and 1° in longitude and latitude. Then, 
means of bias absolute values on these four 
partition classes are evaluated. Results of this 
validation are presented on Figure 2. 

As it can be expected, the simplest method, 
the temperature threshold, gives slightly poorer 
results than the probability matching method in 
any partition. Feed forward neural network 
results are appreciably better than those 
associated with the two classical algorithms. The 
accuracy of these neural network results is 
increasing with the learning iteration number. 
This is particularly important concerning the 

latitude partition. The second neural network 
(1000) seems to consider the rainfall meridional 
gradient of the Sahelian region.  
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Figure 2 : Mean of absolute value biases on four 
partition classes for four procedures 

 
4. SLIDING RESCALING ALGORITHM (SRA) 
 

In order to produce estimated rainfall 
intensities, a Sliding Rescaling Algorithm (SRA) 
is applied. The starting point of this algorithm is 
a probability matching formula (1). The 
estimated rainfall intensity Ie is the product 
between the corresponding rainfall probability 
image Pr , assessed by the feed forward neural 
network described above, and a potential rainfall 
intensity Ip. 
 

rpe PII ×= (1) 
 

4.1. The potential rainfall intensity (Ip) 
 

The Goes Precipitation Index (GPI) 
developed by Arkin and Mesner (1987) and The 
Adjusted GPI (AGPI) proposed by Adler et al. 
(1991) already use calibration coefficients to 
estimate rainfall intensities from infrared 
temperatures. While the GPI algorithm applies a 
constant rain rate of 3 mm/h, the AGPI is 
calibrated with satellite microwave data. This 
calibration coefficient, is based on a ratio 
between monthly GPI and microwave rainfall 
estimations and thus is space dependent. This 
adjustment suffers from the poor reliability of the 
microwave rainfall over land and from a very low 
repetitivity of microwave observations. 

The purpose here, is to calibrate as 
precisely as possible our model and thus to 
minimize the information loss. Time dependent 
potential rainfall images are needed at the 
geostationary satellite space resolution. To 
obtain these images (Ip), a calibration dataset 
made of cumulated rainfall estimations over the 
whole area of interest on short time periods is 
essential. 



4.2. The reference rainfall intensity (Ir) 
 

To compute the potential rainfall intensity Ip 
images, a reference rainfall intensity Ir dataset is 
necessary. In this study, it has been decided to 
use the 1dd GPCP data. It has to be quoted that 
this estimator is more directly related to rainfall 
but does not allow a follow up of phenomena as 
fine as geostationary satellite images in time and 
space.  
 

4.3.  Calculation of potential rainfall 
intensities 

 
From the relation (1), we define a 

downscaling step in time and space equation (2). 
This step allows to evaluate the potential rainfall 
intensity in a circular window of area A for a 
given period T : 
 

(2) 
 

 
The calculation of a potential rainfall intensity 
Ip(a,T) is made possible for each pixel “a” of the 
geostationary satellite image thanks to the 
utilisation of a sliding window of area A. It has 
been decided to create one Ip image for each 
day “d” in the studied period defining the period 
T with the 15 days before and after “d”. One Ip 
image corresponding to July 1st 2000 with a 25 
pixels circular sliding window of area A, and a 
31-day period T is represented on figure 3.  
 

 
Figure 3 : Potential rainfall intensity image (Ip) of the  
July 1st 2000 calculated on the period : June 16th –
July 16th 2000 

 
4.4. Estimated rainfall intensity 

 
Once the daily potential rainfall intensity Ip 
images are computed, the estimated rainfall 
intensity at time t during day d and position a 
can be calculated with the upscaling formula 
(3) deduced from the equation (1): 
 

(3) 

Let Pr(a,d) be the cumulative rainfall probability 
during day d and position a. The estimated 
rainfall accumulation during a period T can be 
easily computed with the equation (4) : 
 

( ) ( ) ( ) (4) ∑
∈

×=
Td

rpe daPdaITaI ,,,
 
 
The estimated rainfall accumulation (Figure 4) is 
deduced from the relation (4). The advantage is 
that the geostationary satellite images resolution 
has been here preserved.  
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Figure 4 : Estimated rainfall intensity image (Ie) on 
July 2000 (in mm) 

 
4.5. Validation 

 
A 1° x 1° raingauge dataset provided by the IRD 
is used to compare and validate this sliding 
rescaling algorithm (SRA). Results of this 
procedure have been gridded with 1° x 1° cells 
in order to make the comparison. 
The statistical parameters used to validate these 
results are the “bias”, the “root mean square 
difference” (RMSD), the “normalised root mean 
square difference” (NRMSD), the “skill score 
index”, and the “explained variance” (R2). 

The monthly results of the validation are 
listed in Table 1.  
Table 1 : Monthly validation results  

Month Method Bias Rmsd nrmsd R2 Skill

July GPCP 18,48 2,57 1,66 0,8 0,71

(280 cells) SRA 2,95 2,47 1,59 0,75 0,73
Mean raingauge rainfall accumulation in July : 152,46 mm 
(Min : 24,96 mm Max : 449,01 mm) 

August GPCP 27,67 3,36 1,87 0,76 0,63

(280 cells) SRA 4,56 2,77 1,54 0,76 0,75
Mean raingauge rainfall accumulation in August : 159,89 
mm (Min : 15 mm Max : 406,15 mm) 

July - 
August GPCP 23,07 2,11 1,78 0,77 0,67

(1120cells) SRA 3,75 1,85 1,56 0,75 0,74
Mean raingauge rainfall accumulation from July to August : 
156,14 mm (Min : 15 mm Max : 449,01 mm) )( ) ( ) ( taPdaItaI rpe ,,, ×=
 



 
The decades results of the validation are listed 
in Table 2. 
Table 2 : Decades validation results  

Decade Method Bias Rmsd Nrmsd R2 Skill 
1st decade 

of July GPCP 20,52 1,93 3,29 0,7 -1,23

(280 cells) SRA 8,11 1,04 1,77 0,75 0,35
Mean raingauge rainfall accumulation : 33,14 mm  

(Min : 0 mm Max : 107,56 mm) 
2nd decade 

of july GPCP 4,11 1,17 1,43 0,65 0,44

(280 cells) SRA 1,48 0,87 1,06 0,75 0,69
Mean raingauge rainfall accumulation : 50,48 mm  

(Min : 1,68 mm Max : 105,66 mm) 
3rd decade 

of July GPCP -6,6 1,6 1,59 0,5 0,39

(280 cells) SRA -7,1 1,45 1,45 0,55 0,5 
Mean raingauge rainfall accumulation : 69,29 mm  

(Min : 14,51 mm Max : 203,35 mm) 
1st decade 

of Aug GPCP 4,05 1,34 1,55 0,67 0,62

(280 cells) SRA -2,35 1,24 1,44 0,68 0,68
Mean raingauge rainfall accumulation : 55,95 mm  

(Min : 0 mm Max : 176,04 mm) 
2nd decade 

of Aug GPCP 4,53 1,53 1,77 0,5 0,31

(280 cells) SRA -0,32 1,3 1,51 0,57 0,49
Mean raingauge rainfall accumulation : 57,36 mm  

(Min : 8,99 mm Max : 132,49 mm) 
3rd decade 

of Aug GPCP 20,37 1,94 2,52 0,79 -0,31

(280 cells) SRA 8,51 1,08 1,41 0,8 0,59
Mean raingauge rainfall accumulation : 45,29 mm  

(Min :3,52 mm Max : 111,22 mm) 

all decades GPCP 7,81 0,53 1,94 0,6 0,39

(2240 cells) SRA 2,75 0,41 1,51 0,67 0,63
Mean raingauge rainfall accumulation : 45,25 mm  

(Min : 0 mm Max : 203,35 mm) 
 
As it can be seen, the SRA results are better 
than those deduced from the GPCP for four of 
the five statistical parameters concerning the 
monthly validation results and for all of these 
concerning the decades validation results. The 
explained variance (R2) is the only parameter 
giving superior results with the GPCP at monthly 
scales only. However, biases results between 
rainfall estimations of SRA and raingauge 
dataset are quite low. 
The rescaling algorithm seems to be more 
efficient than the GPCP on this validation 
dataset. 

5. CONCLUSION 
 
A two steps algorithm based on the utilisation of 
rainfall probability images obtained thanks to 
TRMM precipitation radar and geographical 
potential rainfall intensity provides rainfall 
estimations with the geostationary satellite 
image resolution in time and space. This method 
has been validated for the monthly rainfall 
accumulation and seems to be better than 
GPCP on our dataset in particular in term of bias. 
Several time scales will be studied in the future 
from the decade to the instantaneous values of 
intensity. The proposed algorithm can be directly 
applied to Meteosat-8 : The 12 channels 
provided by this satellite will allow to improve the 
rainfall probability estimation and reinforce the 
reliability of our results. 
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